Shortcuts

Source code for connectomics.model.utils.misc

from __future__ import print_function, division
from collections import OrderedDict
from typing import Optional, List

import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.jit.annotations import Dict


class IntermediateLayerGetter(nn.ModuleDict):
    """
    Module wrapper that returns intermediate layers from a model, adapted
    from https://github.com/pytorch/vision/blob/master/torchvision/models/_utils.py.

    It has a strong assumption that the modules have been registered
    into the model in the same order as they are used.
    This means that one should **not** reuse the same nn.Module
    twice in the forward if you want this to work.

    Additionally, it is only able to query submodules that are directly
    assigned to the model. So if `model` is passed, `model.feature1` can
    be returned, but not `model.feature1.layer2`.

    Arguments:
        model (nn.Module): model on which we will extract the features
        return_layers (Dict[name, new_name]): a dict containing the names
            of the modules for which the activations will be returned as
            the key of the dict, and the value of the dict is the name
            of the returned activation (which the user can specify).

    Examples::

        >>> m = torchvision.models.resnet18(pretrained=True)
        >>> # extract layer1 and layer3, giving as names `feat1` and feat2`
        >>> new_m = torchvision.models._utils.IntermediateLayerGetter(m,
        >>>     {'layer1': 'feat1', 'layer3': 'feat2'})
        >>> out = new_m(torch.rand(1, 3, 224, 224))
        >>> print([(k, v.shape) for k, v in out.items()])
        >>>     [('feat1', torch.Size([1, 64, 56, 56])),
        >>>      ('feat2', torch.Size([1, 256, 14, 14]))]
    """
    _version = 2
    __annotations__ = {
        "return_layers": Dict[str, str],
    }

    def __init__(self, model, return_layers):
        if not set(return_layers).issubset([name for name, _ in model.named_children()]):
            raise ValueError("return_layers are not present in model")
        orig_return_layers = return_layers
        return_layers = {str(k): str(v) for k, v in return_layers.items()}
        layers = OrderedDict()
        for name, module in model.named_children():
            layers[name] = module
            if name in return_layers:
                del return_layers[name]
            if not return_layers:
                break

        super(IntermediateLayerGetter, self).__init__(layers)
        self.return_layers = orig_return_layers

    def forward(self, x):
        out = OrderedDict()
        for name, module in self.items():
            x = module(x)
            if name in self.return_layers:
                out_name = self.return_layers[name]
                out[out_name] = x
        return out


[docs]class SplitActivation(object): r"""Apply different activation functions for the outpur tensor. """ # number of channels of different target options num_channels_dict = { '0': 1, # binary foreground '1': 3, # synaptic polarity '2': 3, # affinity '3': 1, # small object '4': 1, # instance boundary '5': 1, # instance edt (11 channels for quantized) '6': 1, # semantic edt '7': 2, # diffusion gradients (2d) 'all': -1 # all remaining channels } def __init__(self, target_opt: List[str] = ['0'], output_act: Optional[List[str]] = None, split_only: bool = False, do_cat: bool = True, do_2d: bool = False, normalize: bool = False): if output_act is not None: assert len(target_opt) == len(output_act) if do_2d: # 2d affinity only has x and y self.num_channels_dict['2'] = 2 self.split_channels = [] self.target_opt = target_opt self.do_cat = do_cat self.normalize = normalize self.split_only = split_only if not self.split_only: self.act = self._get_act(output_act) for i, topt in enumerate(self.target_opt): assert isinstance(topt, str) if i < len(self.target_opt) - 1: assert topt != 'all', "Only last target can be all" if topt[0] == 'I': # image with specified channel number if len(topt) == 1: topt = topt + '-1' # gray-scale image _, channels = topt.split('-') self.split_channels.append(int(channels)) continue if topt[0] == '5': # instance_edt if len(topt) == 1: topt = topt + '-2d-0-0-5.0' # 2d w/o padding or quantize _, mode, padding, quant, z_res = topt.split('-') if bool(int(quant)): # quantized by 0.1 bin (additional one for bg) self.split_channels.append(11) continue if topt[0] == '9': # semantic masks channels = int(topt.split('-')[1]) self.split_channels.append(channels) continue # use the default channel number for other cases self.split_channels.append(self.num_channels_dict[topt[0]]) print("Channel split rule for prediction: ", self.split_channels) def __call__(self, x): split_channels = self.split_channels.copy() if split_channels[-1] == -1: split_channels[-1] = x.shape[1] - sum(split_channels[:-1]) x = torch.split(x, split_channels, dim=1) x = list(x) # torch.split returns a tuple if self.split_only: return x x = [self._apply_act(self.act[i], x[i]) for i in range(len(x))] if self.do_cat: return torch.cat(x, dim=1) return x def _get_act(self, act): num_target = len(self.target_opt) out = [None]*num_target for i, act in enumerate(act): out[i] = get_functional_act(act) return out def _apply_act(self, act_fn, x): x = act_fn(x) if self.normalize and act_fn == torch.tanh: x = (x + 1.0) / 2.0 return x @classmethod def build_from_cfg(cls, cfg, do_cat: bool = True, split_only: bool = False, normalize: bool = False): return cls(cfg.MODEL.TARGET_OPT, cfg.INFERENCE.OUTPUT_ACT, split_only=split_only, do_cat=do_cat, do_2d=cfg.DATASET.DO_2D, normalize=normalize)
[docs]class ImagePool(object): """This class implements an image buffer that stores previously generated images. Adapted from https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/util/image_pool.py This buffer enables us to update discriminators using a history of generated images rather than the ones produced by the latest generators. """ def __init__(self, pool_size: int, device: torch.device, on_cpu: bool=False): """Initialize the ImagePool class Args: pool_size (int): the size of image buffer, if pool_size=0, no buffer will be created device (torch.device): model running device. GPUs are recommended for model training and inference. on_cpu (bool): whether to save image buffer on cpu to reduce GPU memory usage. Defalt: False """ self.pool_size = pool_size if self.pool_size > 0: # create an empty pool self.num_imgs = 0 self.images = [] self.device, self.on_cpu = device, on_cpu
[docs] def query(self, images): """Return an image from the pool. Args: images: the latest generated images from the generator Returns images from the buffer. By 50/100, the buffer will return input images. By 50/100, the buffer will return images previously stored in the buffer, and insert the current images to the buffer. """ if self.pool_size == 0: # if the buffer size is 0, do nothing return images return_images = [] for image in images: image = torch.unsqueeze(image.data, 0) if self.num_imgs < self.pool_size: # if the buffer is not full; keep inserting current images to the buffer self.num_imgs = self.num_imgs + 1 if self.on_cpu: # save buffer images on cpu self.images.append(image.clone().detach().cpu()) else: self.images.append(image.clone()) return_images.append(image) else: p = random.uniform(0, 1) if p > 0.5: # by 50% chance, the buffer will return a previously stored image, and insert the current image into the buffer random_id = random.randint(0, self.pool_size - 1) # randint is inclusive tmp = self.images[random_id].clone() if self.on_cpu: # save buffer images on cpu self.images[random_id] = image.clone().detach().cpu() else: self.images.append(image.clone()) return_images.append(tmp.to(self.device)) else: # by another 50% chance, the buffer will return the current image return_images.append(image) return_images = torch.cat(return_images, 0) # collect all the images and return return return_images
# ------------------ # Swish Activation # ------------------ # An ordinary implementation of Swish function class Swish(nn.Module): def forward(self, x): return x * torch.sigmoid(x) # A memory-efficient implementation of Swish function class SwishImplementation(torch.autograd.Function): @staticmethod def forward(ctx, i): result = i * torch.sigmoid(i) ctx.save_for_backward(i) return result @staticmethod def backward(ctx, grad_output): i = ctx.saved_variables[0] sigmoid_i = torch.sigmoid(i) return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i))) class MemoryEfficientSwish(nn.Module): def forward(self, x): return SwishImplementation.apply(x) # -------------------- # Activation Layers # --------------------
[docs]def get_activation(activation: str = 'relu') -> nn.Module: """Get the specified activation layer. Args: activation (str): one of ``'relu'``, ``'leaky_relu'``, ``'elu'``, ``'gelu'``, ``'silu'``, ``'swish'``, 'efficient_swish'`` and ``'none'``. Default: ``'relu'`` """ assert activation in ["relu", "leaky_relu", "elu", "gelu", "silu", "swish", "efficient_swish", "none"], \ "Get unknown activation key {}".format(activation) activation_dict = { "relu": nn.ReLU(inplace=True), "leaky_relu": nn.LeakyReLU(negative_slope=0.2, inplace=True), "elu": nn.ELU(alpha=1.0, inplace=True), "gelu": nn.GELU(), "silu": nn.SiLU(inplace=True), "swish": Swish(), "efficient_swish": MemoryEfficientSwish(), "none": nn.Identity(), } return activation_dict[activation]
[docs]def get_functional_act(activation: str = 'relu'): """Get the specified activation function. Args: activation (str): one of ``'relu'``, ``'tanh'``, ``'elu'``, ``'sigmoid'``, ``'softmax'`` and ``'none'``. Default: ``'sigmoid'`` """ assert activation in ["relu", "tanh", "elu", "sigmoid", "softmax", "none"], \ "Get unknown activation_fn key {}".format(activation) activation_dict = { 'relu': F.relu_, 'tanh': torch.tanh, 'elu': F.elu_, 'sigmoid': torch.sigmoid, 'softmax': lambda x: F.softmax(x, dim=1), 'none': lambda x: x, } return activation_dict[activation]
# ---------------------- # Normalization Layers # ----------------------
[docs]def get_norm_3d(norm: str, out_channels: int, bn_momentum: float = 0.1) -> nn.Module: """Get the specified normalization layer for a 3D model. Args: norm (str): one of ``'bn'``, ``'sync_bn'`` ``'in'``, ``'gn'`` or ``'none'``. out_channels (int): channel number. bn_momentum (float): the momentum of normalization layers. Returns: nn.Module: the normalization layer """ assert norm in ["bn", "sync_bn", "gn", "in", "none"], \ "Get unknown normalization layer key {}".format(norm) if norm == "gn": assert out_channels%8 == 0, "GN requires channels to separable into 8 groups" norm = { "bn": nn.BatchNorm3d, "sync_bn": nn.SyncBatchNorm, "in": nn.InstanceNorm3d, "gn": lambda channels: nn.GroupNorm(8, channels), "none": nn.Identity, }[norm] if norm in ["bn", "sync_bn", "in"]: return norm(out_channels, momentum=bn_momentum) else: return norm(out_channels)
[docs]def get_norm_2d(norm: str, out_channels: int, bn_momentum: float = 0.1) -> nn.Module: """Get the specified normalization layer for a 2D model. Args: norm (str): one of ``'bn'``, ``'sync_bn'`` ``'in'``, ``'gn'`` or ``'none'``. out_channels (int): channel number. bn_momentum (float): the momentum of normalization layers. Returns: nn.Module: the normalization layer """ assert norm in ["bn", "sync_bn", "gn", "in", "none"], \ "Get unknown normalization layer key {}".format(norm) norm = { "bn": nn.BatchNorm2d, "sync_bn": nn.SyncBatchNorm, "in": nn.InstanceNorm2d, "gn": lambda channels: nn.GroupNorm(16, channels), "none": nn.Identity, }[norm] if norm in ["bn", "sync_bn", "in"]: return norm(out_channels, momentum=bn_momentum) else: return norm(out_channels)
def get_norm_1d(norm: str, out_channels: int, bn_momentum: float = 0.1) -> nn.Module: """Get the specified normalization layer for a 1D model. Args: norm (str): one of ``'bn'``, ``'sync_bn'`` ``'in'``, ``'gn'`` or ``'none'``. out_channels (int): channel number. bn_momentum (float): the momentum of normalization layers. Returns: nn.Module: the normalization layer """ assert norm in ["bn", "sync_bn", "gn", "in", "none"], \ "Get unknown normalization layer key {}".format(norm) norm = { "bn": nn.BatchNorm1d, "sync_bn": nn.BatchNorm1d, "in": nn.InstanceNorm1d, "gn": lambda channels: nn.GroupNorm(16, channels), "none": nn.Identity, }[norm] if norm in ["bn", "sync_bn", "in"]: return norm(out_channels, momentum=bn_momentum) else: return norm(out_channels) def get_num_params(model): num_param = sum([param.nelement() for param in model.parameters()]) return num_param

© Copyright 2019-2023, PyTorch Connectomics Contributors. Revision 9f6fcf8b.

Built with Sphinx using a theme provided by Read the Docs.